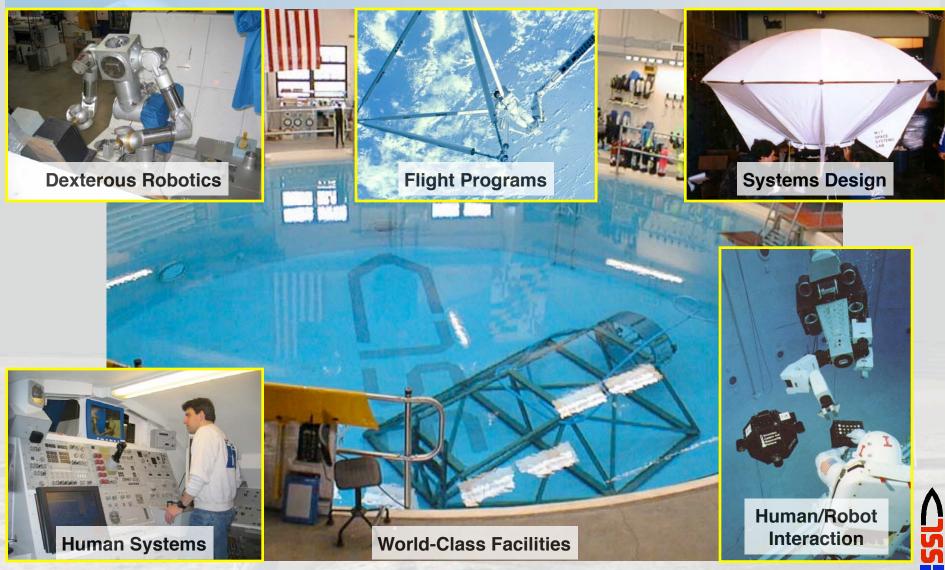
Minimal Functional Habitat

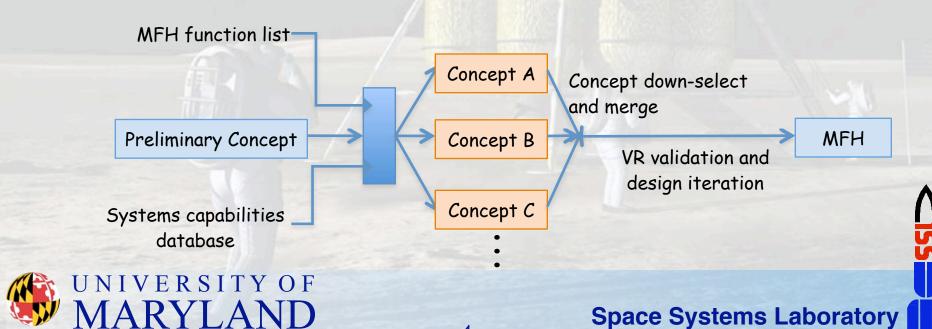
Final Review Presentation

Dr. David L. Akin
Massimiliano Di Capua
Omar Medina
Adam Mirvis

Space Systems Laboratory
University of Maryland


Agenda

- Introduction
- Synopsis of data collection
 - Literature review
 - Survey and analysis
- Design methodology
 - Three separate preliminary designs
 - Synthesis of target concept
- Systems trade studies
- Mockup fabrication and testing
- Final design and growth options


Overview of the UMd Space Systems Lab

Concept Design Process

- UMd investigators develop multiple independent design concepts
 - Preliminary concepts provide a starting point
 - Concepts will explore full range of the design space
 - Synthesize from function lists and systems capabilities database to determine which functions to provide, and which systems to use
 - Concepts will meet MFH functionality, while minimizing costing function for systems

Defining Habitability

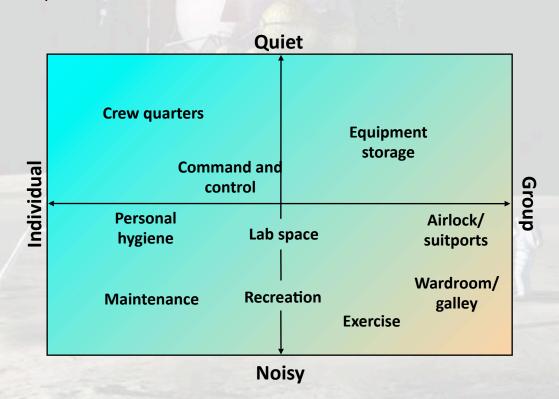
- T.M. Fraser (1968) defines habitability as the:
- "...equilibrium state resulting from the interactions among the components of a man-machine-environment-mission complex which permit man to maintain physiological homeostasis, adequate performance, and acceptable social relationships." Source: Habitability Issues in Long-Duration Undersea and Space Missions Jul 1972

Three levels of habitability, as defined by Preiser:

- 1. Health and safety
- 2. Function and efficiency
- 3. Psychological wellbeing

Nine habitability elements, as defined by Every and Parker:

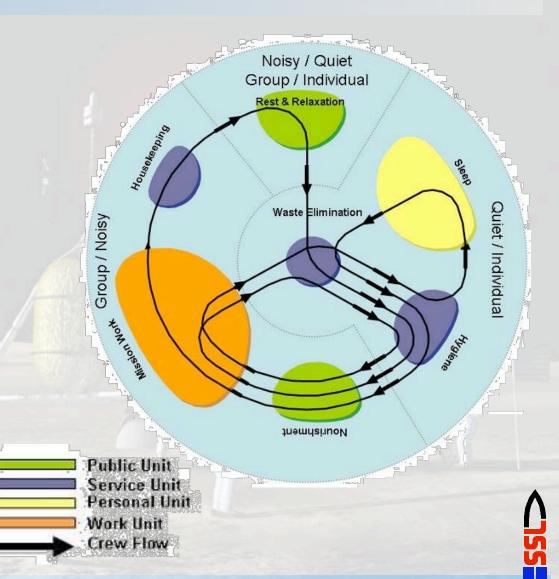
- Environment
- 2. Architecture
- 3. Mobility
- 4. Food
- 5. Clothing
- 6. Personal Hygiene
- 7. Housekeeping
- 8. Communication
- 9. Off-duty activities
- The purpose of this study is to sharpen this definition and expand on these elements by developing a methodology for ranking habitat functions in order to design an austere habitat that supports only the highest ranked functions


Selected Comparable Past Designs

	•			
Name of Habitat	Overall Mass (kg)	Overall Volume (m³)	Crew	Mission Duration (days)
Lunar Surface Emergency Shelter	10,000	8.56	4	5
Concept 1	7,596	15.53	3	14
Pressured Lunar Rover	6,197	49.5	4	14
Pressured Lunar Rover	7,015	125.7	4	14
Scaled Apollo	14,965	25	4	21
Orion Zero Base Vehicle	17,535	40	4	21
MOLAB	3810	12.8	2	21
Concept 2	11,790	26.13	3	30
Concept 1	17,060	162.07	4	30
Concept 2	24,510	273.68	4	30
Concept 3	8,608	131.31	4	30
First Lunar Outpost	No Data	446.6	4	45
First Lunar Outpost	29,986	337.5	4	45

Habitable Environment

- Requirements for life support, atmosphere, noise, lighting, and radiation derived from MSIS
- Functional areas should be zoned by noise level and by group or individual activities (Eckart)
- Approximately 10 m³
 per crew member for
 four crew on a 28-day
 mission (MSIS)
- Habitable volume selection largely a black art, multiple attempts to curve fit past spacecraft have been contradictory



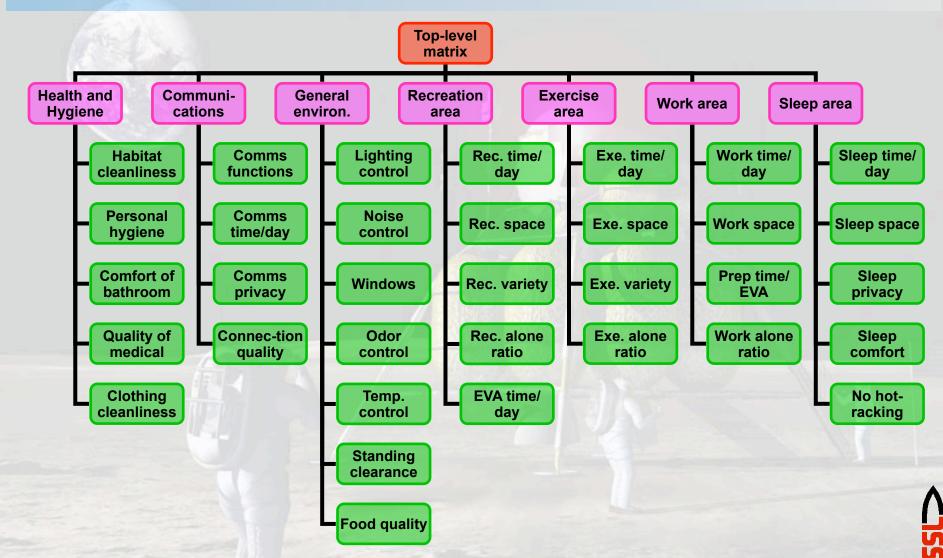
Space Allocation and Crew Flow

A CHANGE	A 100 C	
Unit	Description	% of habitable volume
Work	Operational or Mission- related tasks	40%
Public	Dining, food, management, recreation, and exercise	25%
Personal	Sleeping, privacy, personal stowage	20%
Service	Hygiene, waste management, public stowage	15%

Data from Parker & Every (1972) and Schowalter & Malone (1972)

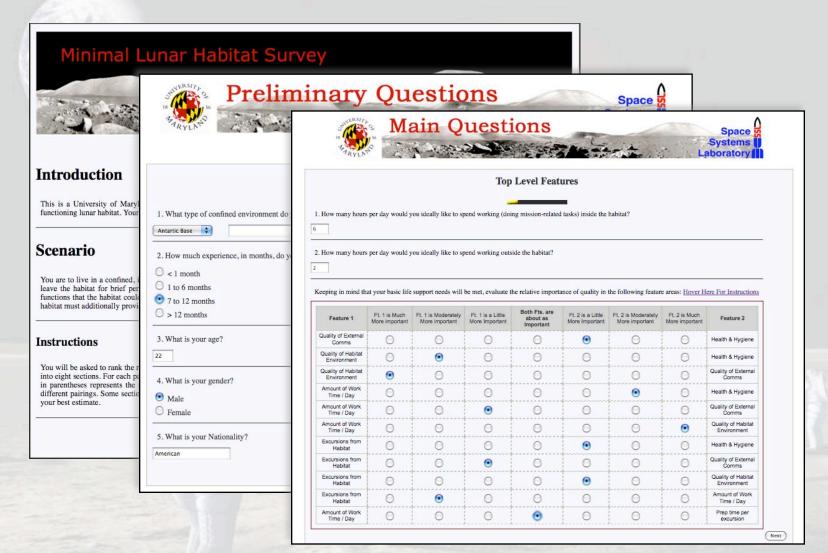
Analytical Hierarchy Process

- Used an Analytical Hierarchy Process survey to determine the relative importance of possible habitat functions for an MFH
 - Life support assumed present
 - Two-level AHP ranks 34 functions based on 90 pair-wise rankings
- Targeted population with experience in remote/confined environments:
 - Astronauts
 - Submariners/ship crews
 - "Submarines were found to be most similar overall to the space ship situation..."


Source: Habitability Issues in Long-Duration Undersea and Space Missions Jul 1972

- Artic/Antarctic research scientists
 - "The south pole is the closest place to space on earth where a permanent, manned US presence exists, and represents a good scientific/logistics/operations analogue for future moon/mars missions"

Source: Antarctic Exploration: Proxy for Safe, Sustainable Exploration of the Moon and Mars



Survey Hierarchy

Online AHP Survey

Data Analysis Method

 Subjective survey responses converted to numerical relative importance values and fed into AHP matrices:

```
"Much less important" = 0.125 (= 2^{-3})

"Moderately less important" = 0.354 (= 2^{-1.5})

"A little less important" = 0.707 (= 2^{-0.5})

"About as important" = 0.707 (= 2^{-0.5})

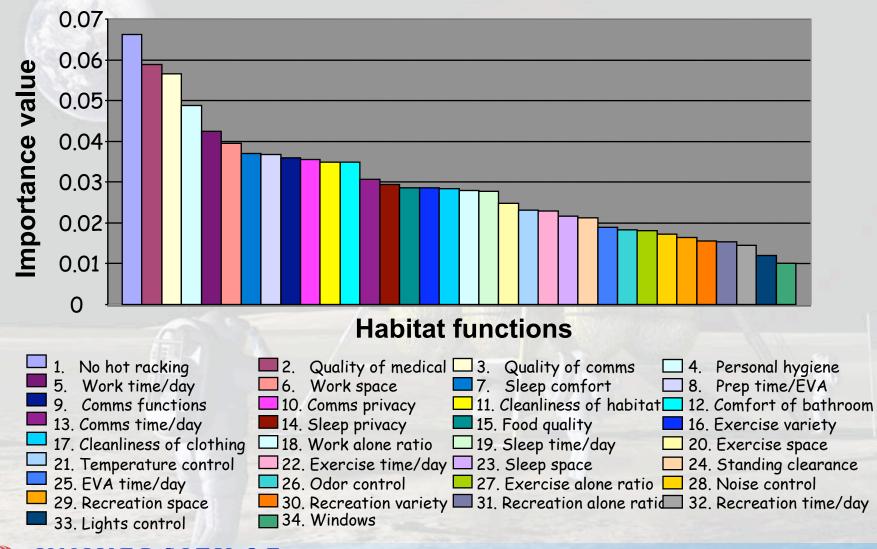
"A little more important" = 0.354 (= 2^{-1.5})

"About as important" = 0.354 (= 2^{-1.5})

1.000 (= 2^{0})

"Moderately more important" = 0.354 (= 2^{-1.5})

2.828 (= 2^{1.5})


"Much more important" = 0.354 (= 2^{-1.5})

8.000 (= 2^{3})
```

- Remaining matrix elements filled in with reciprocals of conjugate elements
- For each AHP matrix:
 - Importance values of each function or sub-category are the elements of the normalized principal eigenvector
 - "Consistency" is matrix size divided by the principal eigenvalue, with a value of 1 indicating complete consistency
 - function importance values multiplied by importance value of the sub-category
- Overall importance values are the averaged values generated from all respondents, weighted by matrix consistency

AHP Results: Function Importance Values

AHP Results: Important Functions

- Hot racking considered unacceptable, the most important function at 2.3 times the average importance value
- Medical facilities, communications connection quality, and personal hygiene round out vital functions
- Work time and space were highly ranked
- Non-physical recreation features considered especially unimportant
- Lighting quality and windows were the least important functions considered, with windows 0.35 times as important as the average function
- The most important function was 6.5 times as important as the least important function

AHP Results: Consistency and Variation

- Overall matrix consistency: 92.5%
 - Most consistent matrix: "Work space", at 96.6%
 - Least consistent matrix: "General environmental quality", at 90.3%
 - Importance value averages are weighted by matrix consistency to improve reliability of results
- Standard deviation and coefficient of variation were computed for each habitat function
 - Average standard deviation was 0.0215, average coefficient of variation was 73.4%
 - Greatest std. dev.: "No hot racking" ($\sigma = .0645$, $c_v = 97.4$ %)
 - Greatest coeff. of variation: "Quality of comms" (σ = .0637, c_v = 112.5%)
 - Lowest std. dev.: "Recreation time per day" (σ = .0066, c_v = 45.5%)

AHP: Demographics and Analysis of Variance

- Respondents:
 - By nationality:
 - American (15)
 - Italian (11)
 - French (2)
 - Romanian (1)
 - By experience:
 - Submarine (19)
 - Ship (11)
 - Arctic/Antarctic base (3)
 - Other (2)
 - By age group:
 - ≤40 years (16)
 - >40 years (13)

Statistically significant variances, at 95% confidence

Demographic set	<u>Feature</u>	Difference from complimentary set
Europh	EVA time/day	+26.3%
French	Exercise alone ratio	-11.9%
American	Quality of comms	-5.3%
1	Personal hygiene	+0.9%
	Quality of medical	+1.3%
Ship crew members	Recreation alone-time ratio	-0.8%
	Sleep privacy	+0.3%
Submariners	Bathroom comfort	-0.6%
4 40-	Comms privacy	-1.4%
Age 40+	Temperature control	-0.8%

 Performing ANOVA between astronaut and analogue populations can justify the statistical relevance of analogue populations

Fidelity of analogue environments

- The analogue environments considered in the survey may be of low fidelity, due to several factors:
 - Windows may be less important in environments with a static view/ no external view
 - Affects of reduced gravity on the importance of habitat functions not accounted for
 - Ability to leave environment may impact importance of habitat functions
- Larger samples and samples of the astronaut population would be needed to identify statistical significance of variations between analogue and space environments

Quality Function Deployment

- Quality Function Deployment (QFD) used to map habitat functions to specific design features, based on subjective assessment of strength of relationship
- Relationship strength multiplied by the importance value of the corresponding habitat function and summed across all habitat functions to yield the importance of a given design feature
- Useful in determining the added value of an extra unit of mass, volume, etc. to a given system or subsystem
- Most important design features:
 - Amount of volume available for activities and privacy
 - Sufficient electrical power and data rate for highfunctioning communications
 - Running water

		Design features
AHP habitat Functions	Habitat function importance values	Relationship matrix
		Design feature importance values

QFD Implementation

Quality of comms Lights colored Noise control Windows Odor control Temperature control Standing clearance Food quality Rec space	0.030345 0.035341 0.05731 0.011869 0.01679 0.009841 0.018986 0.02369 0.02369 0.0287 0.016397 0.015041		4			2	8	9 9	9	design feature empty cell = 1 = 3 =	re and AHP function: no relationship weakly related moderately related strongly related	Design feature	Suitbort(s)	Volume of crew airlock, if present	Volume of tool airlock, if present				
Exercise variety 0	0.024372 0.028617 0.018572	#	5		\pm		\pm	\parallel	t		AHP Function / we	<u>eight</u>	A	A	A	Ш	\pm	\sharp	\pm
Work space 0	0.039183	#	世				士	廿	1		Cleanliness of hab	0.035283	5	Π		Ш	\pm	廿	\pm
Prep time/EVA 0 Work alone ratio	0.037124	9 5	+	\vdash	+		lacksquare	₩	-		Personal Hygiene	0.04989		\Box	T	9	9	$+\!+$	+
	0.026	++	+	\vdash	+	\vdash		\leftarrow	╂				-	⊢	₩	┹┼┼┤	9 9	 	+
		++	+	\vdash	+	\vdash	+-	N	4		Comfort of bathroom	0.034159		l	1	H	— ⁹	\rightarrow	+
	0.029328	+	$\perp \!\!\! \perp$	\sqcup	Ш	Ш			٧L		• • • • • • • • • • • • • • • • • • • •	0.034133	1	Ļ.,	Ļ.,	┹┷┤	\perp	9	7
Sleep comfort, physical 0	0.037386		3	2			\top	П			3 6 2 7 7	7 1					3	5	6
	0.067572	\top	\top	\Box	\top	\sqcap	\top	\sqcap	\top			1 1	\sqcap		\top	$\dashv \dashv$	\top	\top	7

QFD Results: First 20 Design Features

Rank	Design feature	Importance value	Rank	Design feature	Importance value
1	Total habitable volume	1.823	11	Total noise	0.677
2	Electrical power	1.589	12	Heat removal rate	0.660
3	Running water	1.460	13	Ventilation rate	0.642
4	Particle/odor/ microorganism filtration	1.314	14	No hot racking	0.608
5	Earth downlink data- rate	1.296	15	Communications features	0.578
6	Humidity	1.074	16	Volume re-allocate- able for medical use	0.529
7	Closed loop water	1.066	17	Complexity of first-aid	0.529
8	Frequency of clothing changes	0.925	18	Medical sensors/ diagnostic equip.	0.529
9	Accessible storage volume	0.845	19	Sponge bath vs. shower	0.518
10	Number of controllable lighting zones	0.681	20	Communications quality	0.516

MDRS Crew 73 - 12/27/08-1/2/09

- Unscheduled target of opportunity to collect data on space usage and personnel flows in confined environments. (Thanks to Heather Bradshaw and the Mars Society.)
- Two compact digital cameras used to:
 - Acquire an 800x600 pixel frame when motion is detected
 - Typical sequence rate 2 sec/frame
- Acquired more than 100,000 frames over one week.
- Final goal: Collect data to optimize relative locations of functional spaces
- Results will be published at ICES 2009

Virtual Reality Testing and Validation

- Use immersive 3D environment (head-mounted display with head and hand motion tracking, and flythrough navigation control) to analyze habitat designs with stereoscopic vision and 1:1 scaling
- Primarily interested in work envelopes, to optimize size, shape, and usage demands on crew spaces

Virtual Reality Testing and Validation

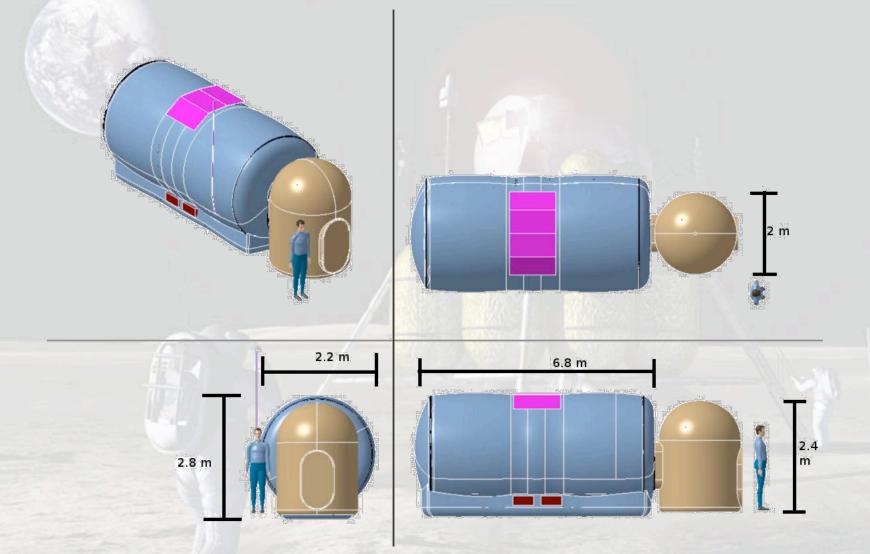
- Software:
 - Dassault Systems CATIA V5R18
 - Nvidia stereo drivers
- Hardware:
 - Stereoscopic Head Mounted
 Display eMagin Z800 3D Visor
 - OLED microdisplays
 - Field of view: 40° (diagonal)
 - Resolution: 800 x 600
 - Refresh rate: 60 Hz
 - 100% eye overlap
 - Stereoscopy: page flipping

Design Space Subdivision

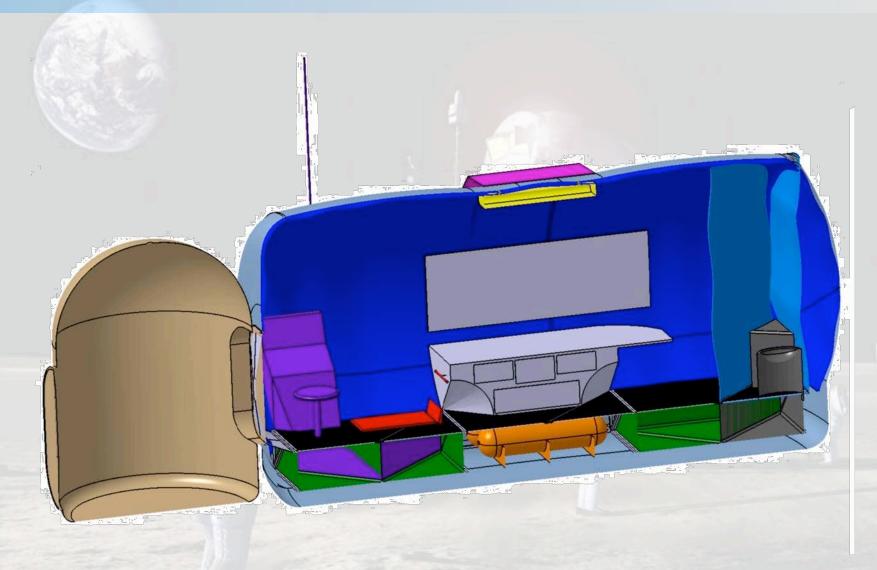
- Three separate teams were tasked to independently develop three preliminary point designs
- Individual design requirements were differentiated by mission profiles and support infrastructure
- Common Requirements:
 - Crew: 4
 - Provide basic life support (crew survival)
 - Mission duration: 28 days

Design Space Subdivision

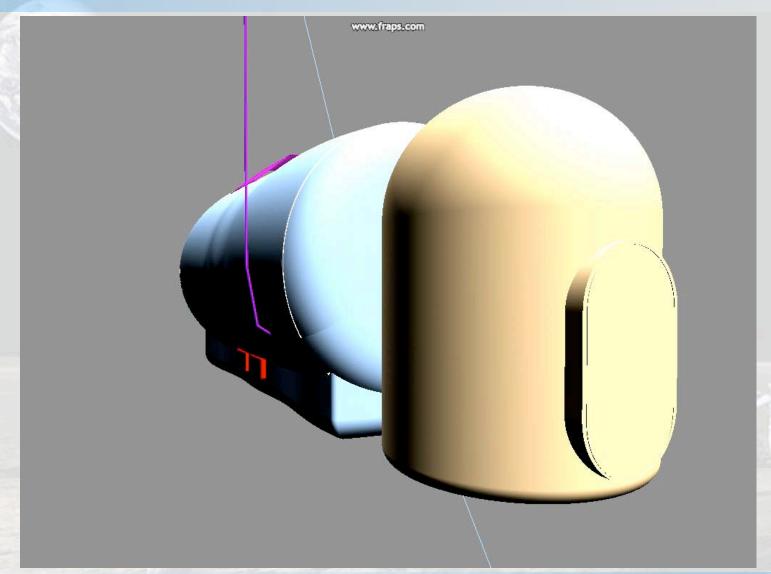
	Lunar Puptent	Winnebago	Igloo
Concepts			
Available Systems	None	Altair Lander	Outpost
Purpose	Standalone Contingency	Initial Exploration Outpost Expansion	Extended Crew (+4) Outpost Dependent


The Lunar Pup-Tent

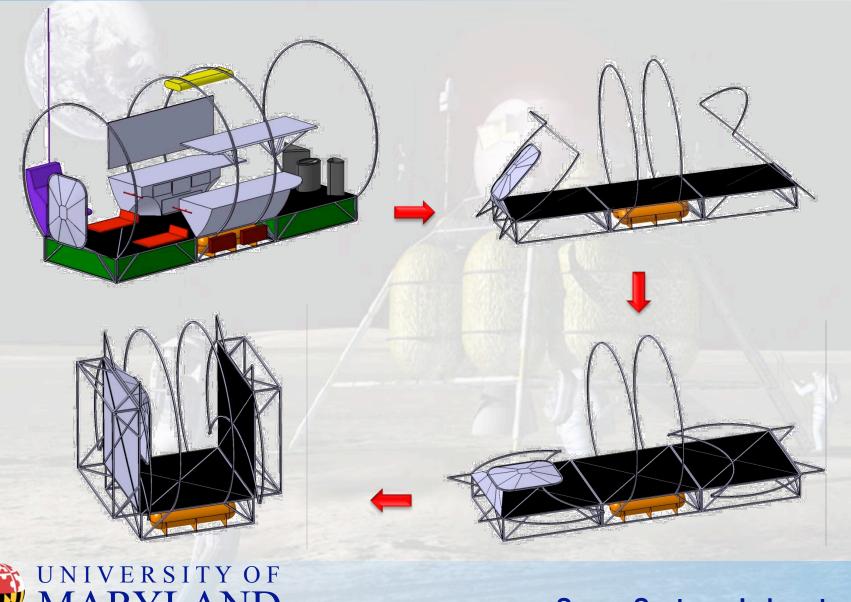
- Mission Profile:
 - The lunar pup tent has been designed to minimize storage volume and mass
 - Provides for crew survival while waiting for a rescue mission from either an outpost-based or Earth-based crew
- Top Level Requirements
 - Meet basic needs (air, water, food, exercise, thermal and radiation protection) to a crew of four for 28 days (standalone)
 - No redundant systems (and therefore no +30 day contingency)
 - EVAs will be limited to habitat entry and evacuation
 - Must self-deploy



Exterior View

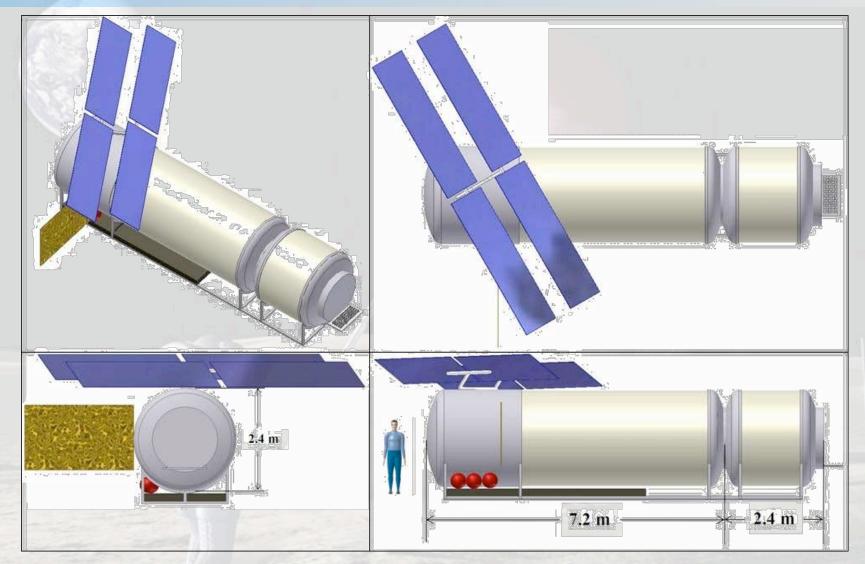


Interiors



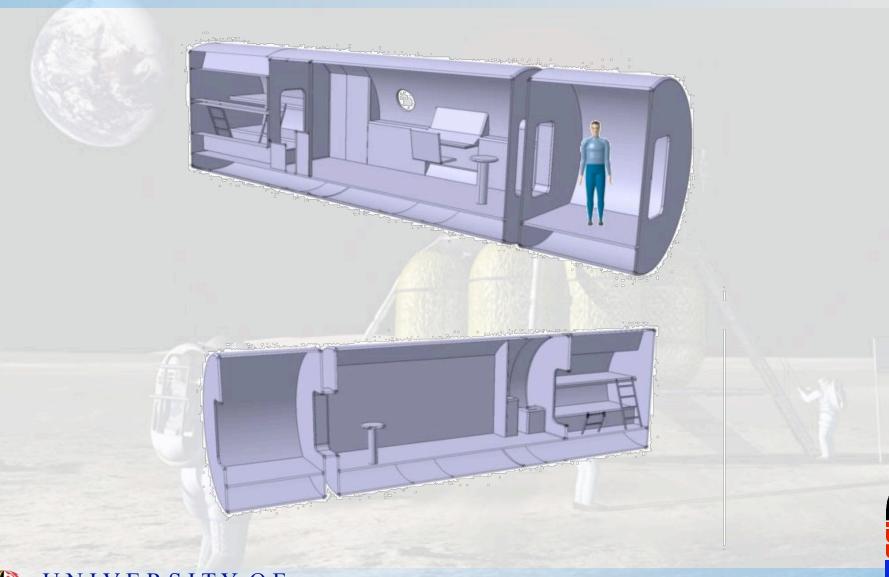
VR Walkthrough

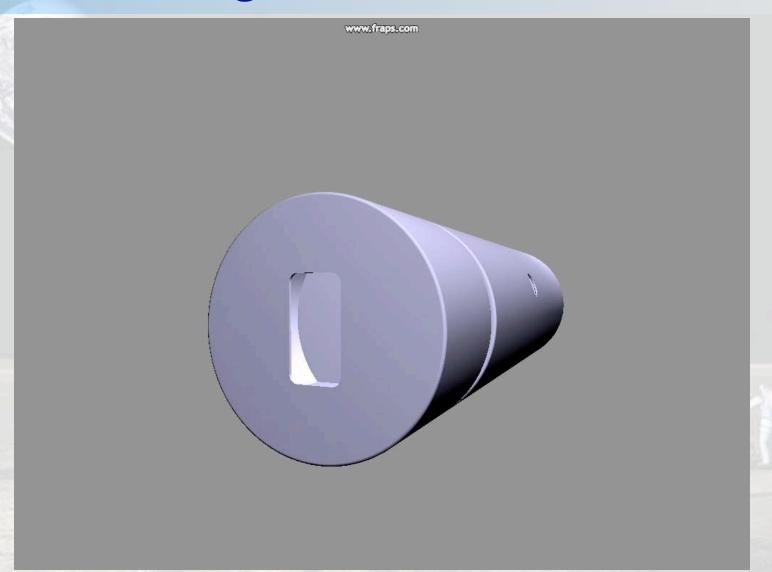
Collapsible Structure


The Winnebago

- Mission Profile:
 - 28 days, 4 crew
 - Habitat element supported by one Altair lander
 - Designed to operate independently of Constellation outpost architecture
 - Can be adapted and expanded to fill a role as part of an outpost
 - Partially inflatable hybrid structure
- Top Level Requirements:
 - Provide for crew functionality for 28-day mission with a minimum of resources
 - Not a contingency scenario, can require in-situ preparation

Exterior View

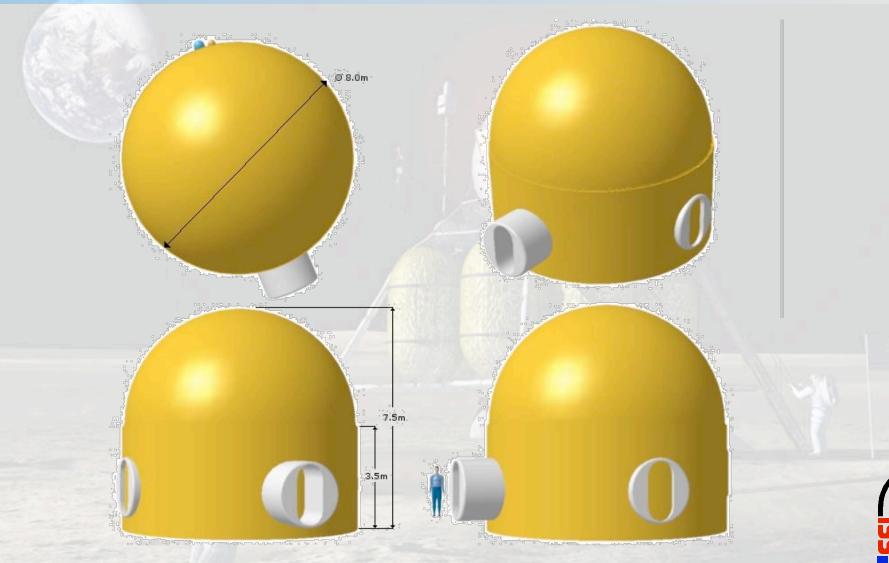




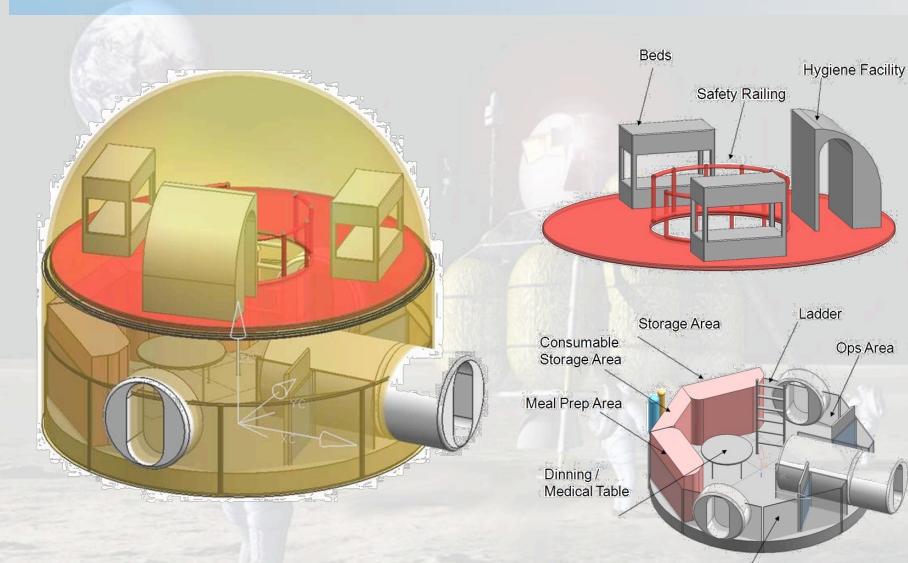
Interiors

VR Walkthrough

The Igloo

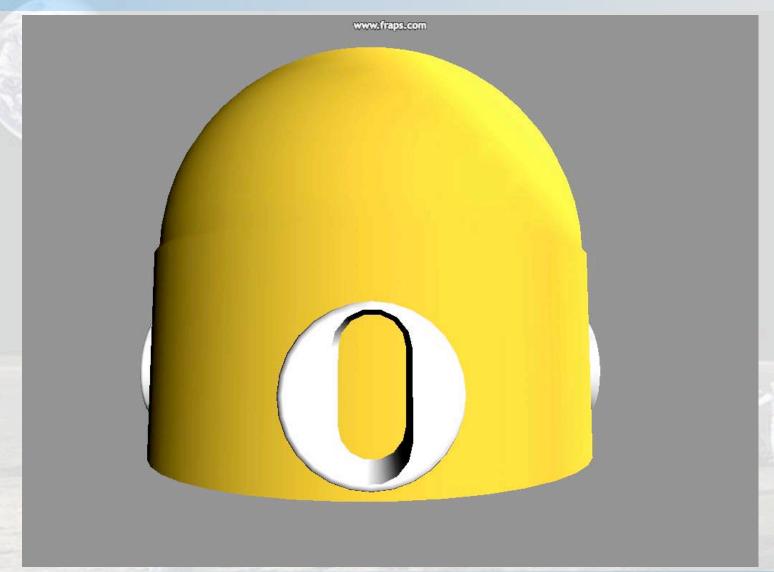

- Mission Profile:
 - Provide a Minimum Functional Habitat addition to the ESMD design
 - MFH can be used as a secondary or emergency shelter
 - Increase ESMD outpost total crew size to 8 for a one month mission

- Requirements/Assumptions
 - Main outpost provides:
 - GCR and SPE shielding
 - Communications / Avionics
 - Power
 - Outpost location: south pole
 - In-Situ Resource Utilization
 - Habitat shall provide:
 - Thermal control
 - Power back-up
 - Food/medical and other supplies for 58 days
 - 28-day mission
 - 30-day contingency
 - Airlock
 - ECLSS



Exterior View

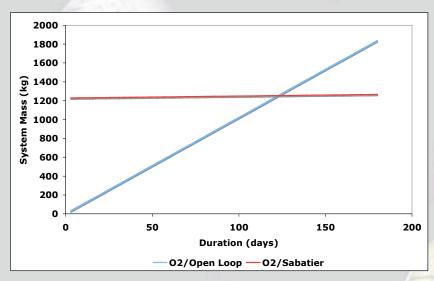
Interiors

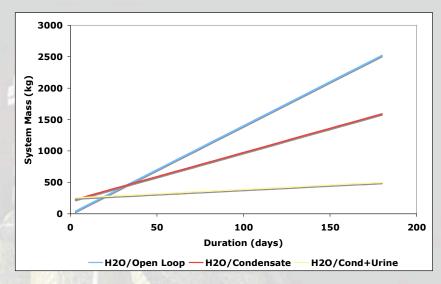


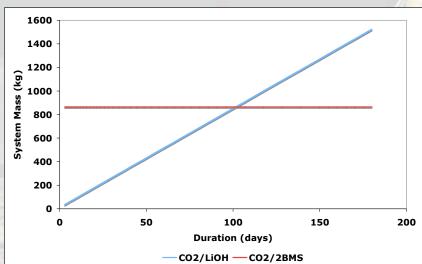
Ops Area

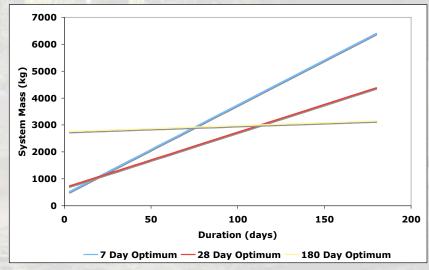
Ops Area

VR Walkthrough

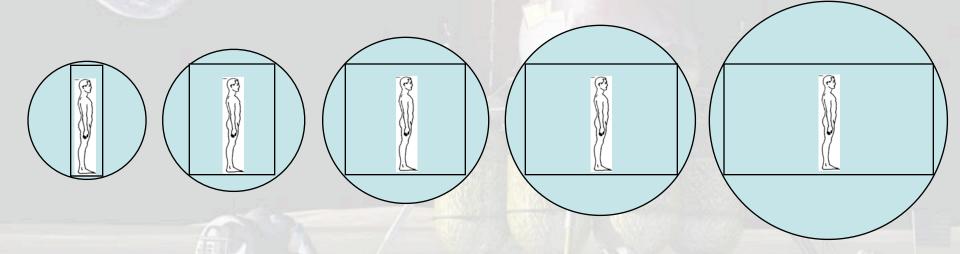



Lessons Learned


- VR is a useful tool for rapid evaluation of concepts
- Accurate registration in the head tracking is fundamental
- Models must be very detailed in order to give a feel for the environment
- Simultaneous hand tracking is a very desirable feature
- Horizontal cylinders give a sense of tunnel vision
- Vertical cylinders allow for better floor space usage, but provide less wall area
- In vertical cylinders, vertical ladder should not be located in the center of the floor space

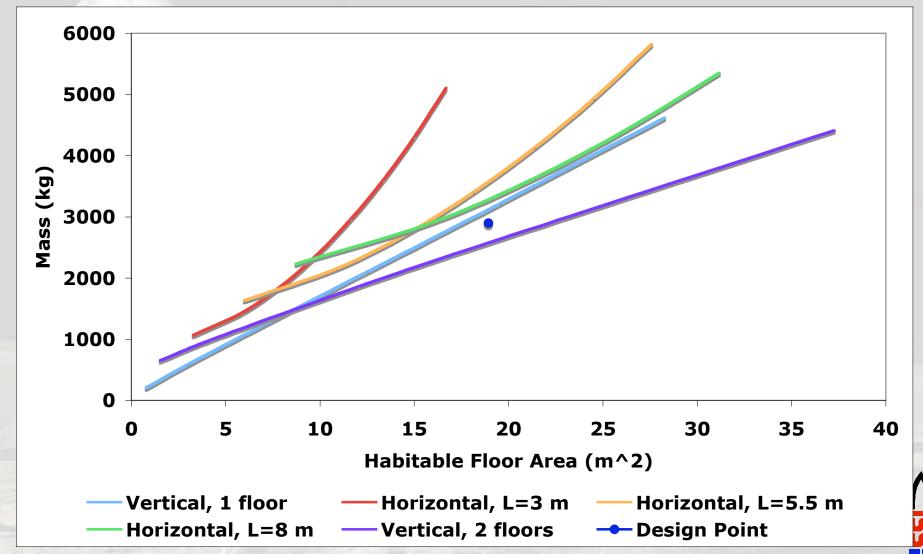


Parametric Life Support Trades

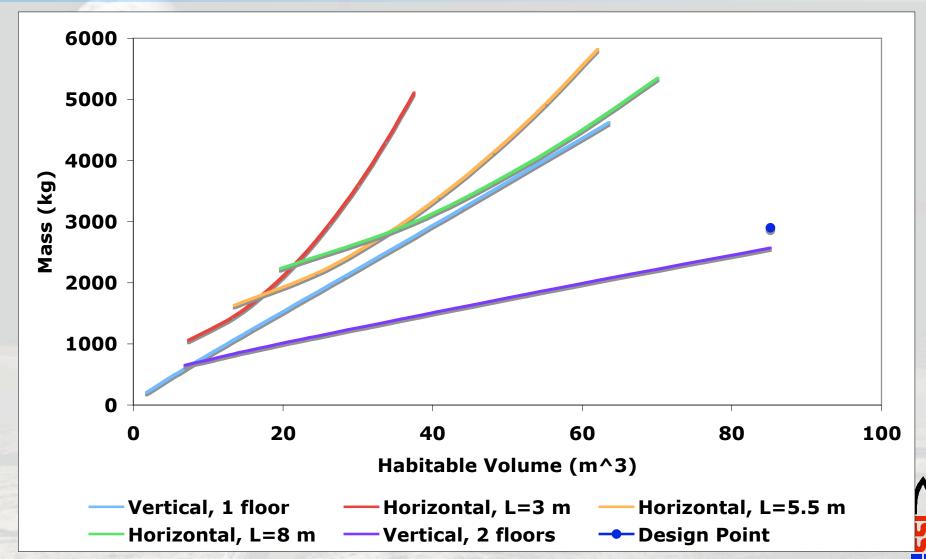


Habitat Layout - Vertical or Horizontal?

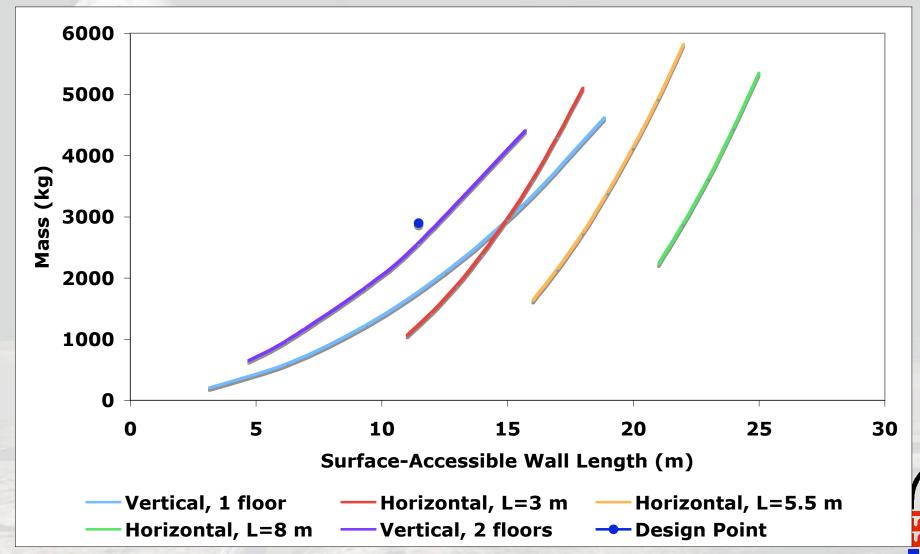
 Geometric modeling of "packing factor" to fit humans into cylindrical shapes


 Mass estimation for human-rated pressurized volumes from JSC-26096 (converted to metric)

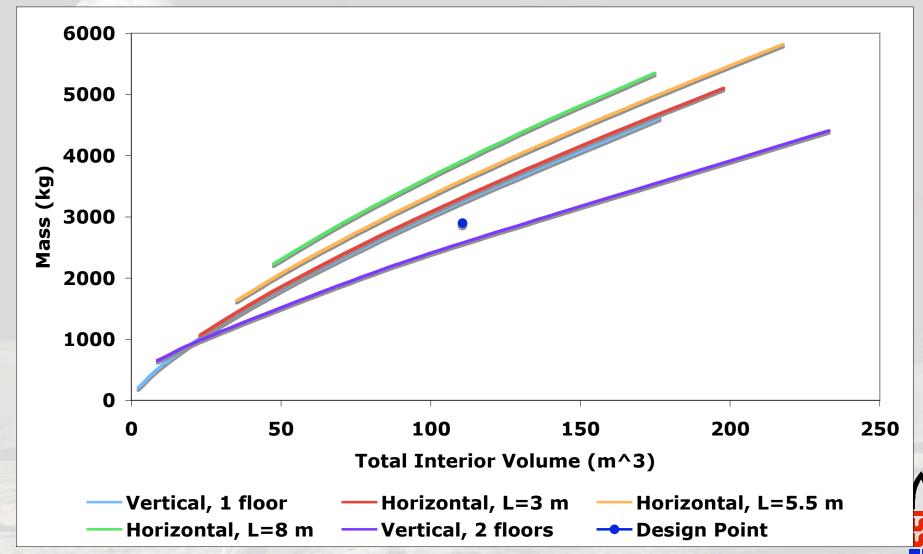
$$M < kg > = 13.94 \left(A_{surface} < m^2 > \right)^{1.15}$$



Habitat Layout Trades - Floor Area



Habitat Layout Trades - Useful Volume



Habitat Layout Trades - Accessible Wall

Habitat Layout Trades - Total Volume

Conclusions From Trades and Designs

- Minimum functional habitat is feasible across the spectrum of possible designs
 - Inflatable
 - Horizontal cylinder
 - Vertical cylinder
- An MFH which meets the mass limitations of this study will be quite small
- Multilayer vertical configuration (clearly favored by parametric analysis) has much less design background (other than colonization concepts)
- Significant utility to a full-scale mockup for evaluation

Full-Scale Mockup Design

- Availability of fiberglass tank in size range of interest
 - 3.65 m diameter x 3.3 m tall
 - Open top required some simple and quick approach to weatherproofing
 - Total time available for mockup = 2 weeks
- Internal layout and surface area
 - Vertical cylinder with two decks
 - Approximate surface area: 30 m²
 - Separate functional areas as much as possible

ECLIPSE Mockup – Main Structure

ECLIPSE Mockup – Main Structure

ECLIPSE Mockup - Interiors

ECLIPSE Mockup - Interiors

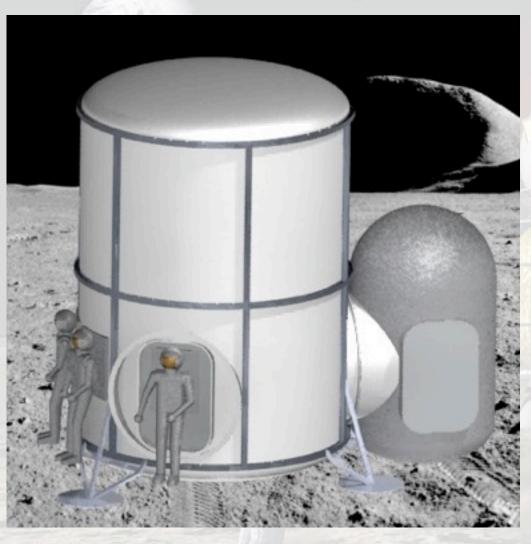
Testing: ECLIPSE Crew 1

- Technical mission for preliminary habitat evaluation and systems testing
 - Crew: 4
 - Duration: ~40 hrs
- Failures summary:
 - T-2h: Water distribution systems leaks and
 - absence of spare parts doesn't allow for repairs
- T+0 (2:34 a.m. of Feb 5th): Hatch closed
- T+5 min.: First failure (electrical system malfunction)
- T+10 min.: electrical system repaired

ECLIPSE Crew 1

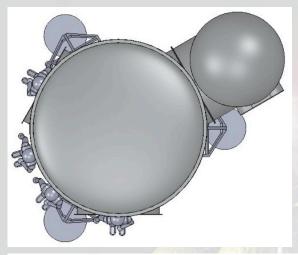
Lessons Learned from Mockup

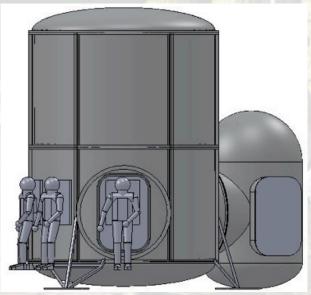
- A two floor design must accommodate for easy package transport between floors
- Avoid using beds/bunks for seating space
- Include a table in the living quarters; otherwise move food preparation to operations area
- Must have a source of drinkable water on each floor
- Must redesign bunks in order to better interface with the dome (and therefore waste less space)
- Trash accumulates quickly and requires air tight storage or disposal space.
- Bathroom privacy and comfort is not easy to obtain in such environment

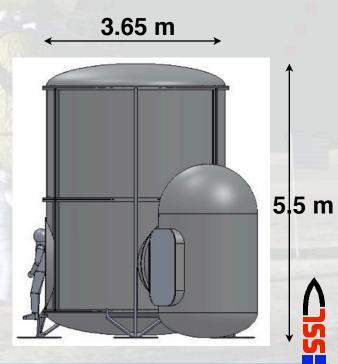

Development of Final Design

- Synthesis from preliminary designs, trade studies, virtual reality, and full-scale mockup tended to
 - 3.65 m diameter
 - Two full-diameter levels
 - Separation of operations and habitation functions
- Operational assumptions
 - Four suitports for nominal ops plus inflatable airlock
 - Premium on stowage, multipurpose space, functionality
- Design to MFH specifications for outpost; examine options in both growth (multihabitat) and isolated (self-sufficient habitat) directions

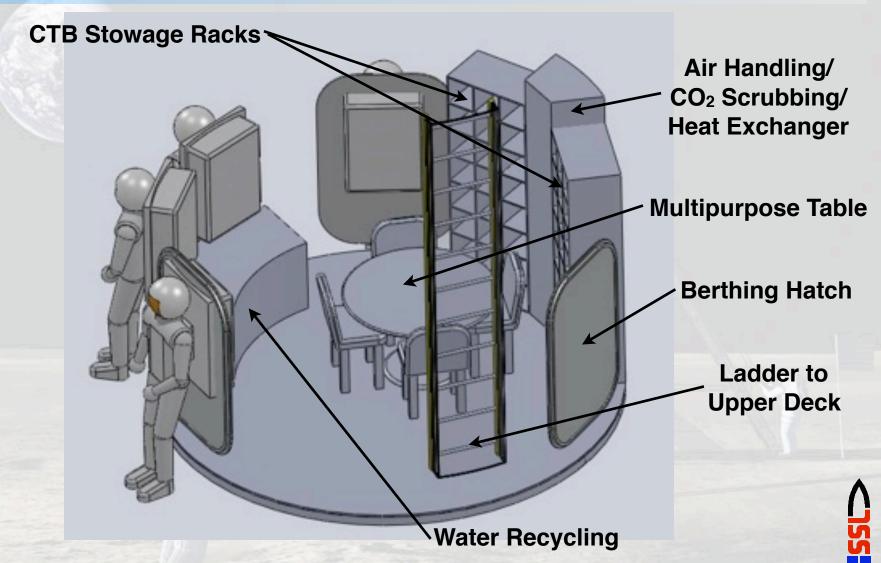
UMd Final MFH Design

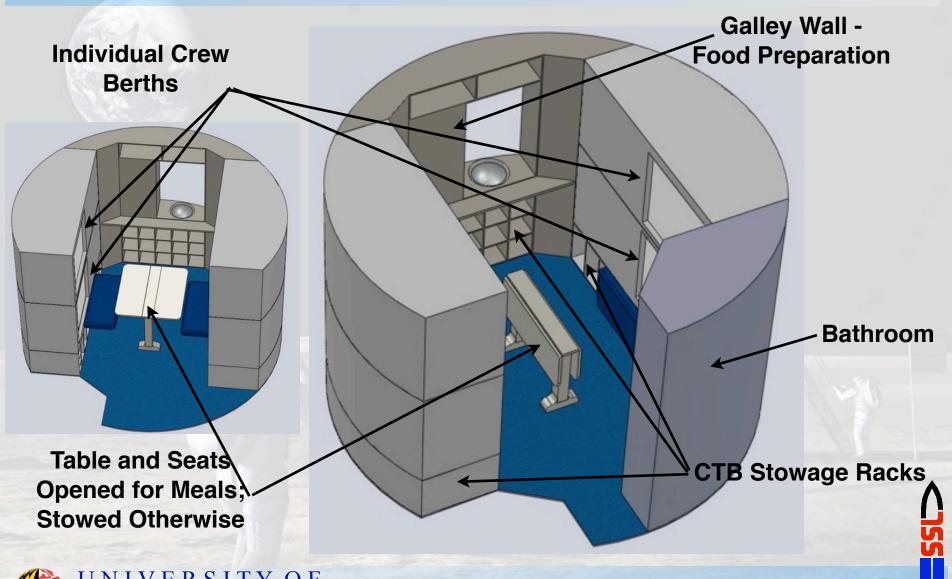



- 3.65 m diameter
- 5.5 m tall
- 4:1 ellipsoidal endcaps
- Three module berthing ports (Cx standard)
- Four suitports (two in berthing hatches)
- Inflatable airlock
- All 6063-T6 structure

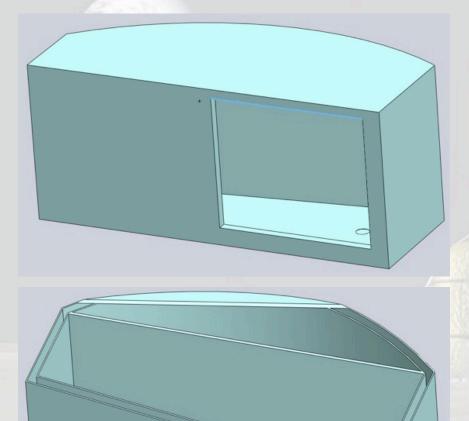


Habitat Orthogonal Views





Lower Deck Layout



Upper Deck Layout

Crew Berths

- Personal sleeping berths
- Individual stowage for 6
 CTBs and 0.24 m³ of
 loose gear
- Water wall 215 kg of water provides 5 gm/cm² radiation shielding (polyethylene door not shown)
- Contingency waste management for 48 hours

Life Support Systems

- MOS CO2 scrubbers
 - Recharge for suit PLSS systems
 - Commonality with suit units
 - Growth: Sabatier reactor for O2 recovery
- Vacuum compression distillation (VCD) for water recovery
 - Recycles wash water, urine
 - No plans to recover water from feces (waste collection tank in lower dome)

Avionics

- "It's not a spacecraft, it's a house!"
 - Dr. Gary Noyes, Oceaneering Space Systems
- Communications handled by Constellation Lunar Communications Terminal (LCT)
- Life support systems operated by embedded industrial controllers
- 801.11n (equivalent) wireless routers
 - Command and control/systems monitoring
 - Voice over IP

Power Management and Distribution

- Power generation by Cx Mobile Power Unit (MPU)
- 28VDC distribution
- Copper lines to wall plugs/hardwired systems
 - Lower deck
 - 4x suitports (PLSS recharge)
 - Water reclamation systems
 - Air reclamation systems
 - Overhead truss (power drop to general purpose table, lights)
 - Airlock
 - Upper deck
 - · 4x berths
 - Wardroom table

- Kitchen wall (oven, lights)
- Bathroom

Thermal Systems

- Heat exchanger between cabin air and water/ glycol loop
- Integrated thermal/micrometeoroid shields (TMS) over upper dome, each of six wall segments around upper deck - each segment selectable
- Aeroglaze A276 paint on TMS panels
- MLI between TMS panels and pressure hull
- Nominal heat balance at 22°C requires dome and two upper wall segments
- System operational with loss of dome or any two wall segments

Mass Estimates - Structure

Element	Mass (kg)		
Upper dome	404		
Upper cylinder	934		
Lower cylinder	957		
Lower dome	404		
External structure	118		
Floor structures	207		
Stabilizer legs	272		
Hatches	91		
Inflatable airlock	68		
Totals	3455		

Mass Estimates - Crew Accommodations

Element	Mass (kg)		
CTB racks	36		
Equipment enclosures	27		
Furniture	23		
Level 1 Total	86		
Waste collection module	68		
Berths	278		
Table	14		
Galley wall	91		
Level 2 Total	451		
Overall Total	537		

Mass Estimates - Life Support

Element	Mass (kg)	
Air handling	23	
CO2 scrubbing (MOS)	64	
Water recycling (VCD)	57	
Air tanks	544	
Water and waste tanks	54	
Thermal systems	146	
Fixed Life Support Total	888	
Consumable air + tanks	591	
Consumable water	288	
Bulk stowage (NASA spec)	1200	
Consumables Total	2079	

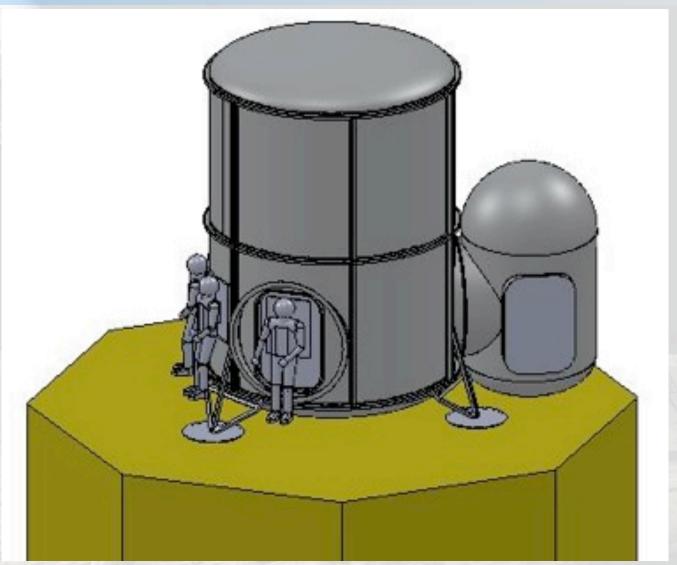
Mass Estimates - Summary

Element	Mass (kg)		
Structures	3455		
Crew Accommodations	537		
Fixed Life Support	888		
Consumables	2079		
Total Mass Estimate	6959		

- Dry mass of 4883 kg has 30% margin on 7000 kg limit
- Does not include 861 kg of water for SPE crew shielding
- Considerable mass savings possible by structural optimization (conservative assumptions used throughout)

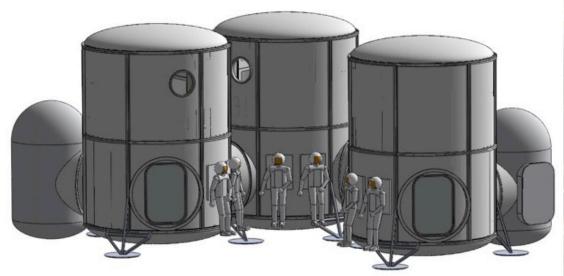
Power Estimates - Summary

Element	Power (W)	Duty Cycle	Avg. Power
Air Handling	100	100%	100
2BMS	800	100%	800
TIMES	200	100%	200
Lighting	490	varies	103
Food Preparation	500	5%	25
Thermal	150	100%	150
Avionics	350	60%	210
Peak Power Estimate	2590	Avg. Pwr.	1588
Crew Body Load			400
Solar/Lunar Insolation			4579
Total Thermal Load			6567

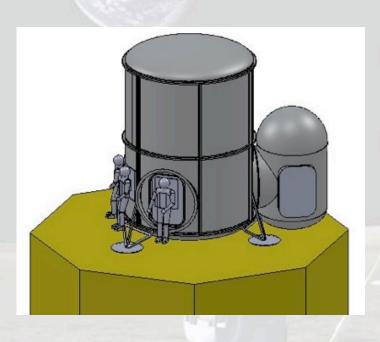


Stowage Summary

- Cargo Transfer Bag (CTB) direct stowage = 137
 - Lower Deck 2xCTB cabinets = 48 CTBs
 - Upper Deck Underberth CTB stowage = 50 CTBs
 - Upper Deck Galley wall CTB stowage = 15 CTBs
 - Upper Deck Berth stowage volume = 24 CTBs
- Open stowage volumes (all upper deck)
 - Galley stowage cabinets $2x0.36 \text{ m}^3 = 34 \text{ CTB}$ equiv.
 - Open berth stowage $4x0.24 \text{ m}^3 = 44 \text{ CTB}$ equiv.
- Total stowage capacity = 215 CTB equiv. = 4.6 m³


Early Operations on Altair Lander

Growth Options



- Multiple habitats can be docked together to form extended outposts
- ~0.5 m flexible couplers needed between berthing ports
- Smallest closedloop configuration is six habitats

Early Operations on Altair Lander

- With addition of power generating/storage capability, this class of habitats could be used for stand-alone missions of up to two months anywhere on the moon
- Cargo lander payload would accommodate habitat, PSU, and rover

Accomplishments

- Performed fundamental research to frame architecture questions and provide design database
- Investigated personnel priorities based on analogue experiences
- Developed four preliminary habitat designs
- Developed and performed preliminary testing of full-scale two-level habitat
- Performed detailed design of minimal functionality habitat, with extensions to indefinite durations

Potential Follow-ons

- Much interesting research remaining to be done
 - Increase fidelity in full-scale mockup
 - Quantitative evaluation of efficacy of VR habitability assessments
 - Demonstration of "wireless" command/control/data network
 - Continue habitat design in greater depth
 - Integrate full-scale habitat mockup into field trials
 - Study interactions with rovers, surface robotics
 - Extend AHP/QFD survey to flight crew and mission ops
- We appreciate the opportunity to be involved with Constellation and hope to be able to continue...

